Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Front Plant Sci ; 15: 1272326, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481398

RESUMO

Rice blast and bacterial leaf blight, are major disease, significantly threatens rice yield in all rice growing regions under favorable conditions and identification of resistance genes and their superior haplotypes is a potential strategy for effectively managing and controlling this devastating disease. In this study, we conducted a genome-wide association study (GWAS) using a diverse set of 147 rice accessions for blast and bacterial blight diseases in replications. Results revealed 23 (9 for blast and 14 for BLB) significant marker-trait associations (MTAs) that corresponded to 107 and 210 candidate genes for blast and BLB, respectively. The haplo-pheno analysis of the candidate genes led to the identification of eight superior haplotypes for blast, with an average SES score ranging from 0.00 to 1.33, and five superior haplotypes for BLB, with scores ranging from 1.52cm to 4.86cm superior haplotypes. Among these, superior haplotypes LOC_OS12G39700-H4 and LOC_Os06g30440-H33 were identified with the lowest average blast scores of 0.00-0.67, and superior haplotype LOC_Os02g12660-H39 exhibited the lowest average lesion length (1.88 - 2.06cm) for BLB. A total of ten accessions for blast and eight accessions for BLB were identified carrying superior haplotypes were identified. These haplotypes belong to aus and indx subpopulations of five countries (Bangladesh, Brazil, India, Myanmar, and Pakistan). For BLB resistance, eight accessions from six countries (Bangladesh, China, India, Myanmar, Pakistan, and Sri Lanka) and four subpopulations (aus, ind1A, ind2, and ind3) were identified carrying superior haplotypes. Interestingly, four candidate genes, LOC_Os06g21040, LOC_Os04g23960, LOC_Os12g39700, and LOC_Os01g24640 encoding transposon and retrotransposon proteins were among those with superior haplotypes known to play a crucial role in plant defense responses. These identified superior haplotypes have the potential to be combined into a single genetic background through haplotype-based breeding for a broader resistance spectrum against blast and bacterial blight diseases.

2.
Theor Appl Genet ; 137(2): 37, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38294550

RESUMO

KEY MESSAGE: Estimating genetic gains and formulating a future salinity elite breeding panel for rice pave the way for developing better high-yielding salinity tolerant lines with enhanced genetic gains. Genetic gain is a crucial parameter to check the breeding program's success and help optimize future breeding strategies for enhanced genetic gains. To estimate the genetic gains in IRRI's salinity breeding program and identify the best genotypes based on high breeding values for grain yield (kg/ha), we analyzed the historical data from the trials conducted in the IRRI, Philippines and Bangladesh. A two-stage mixed-model approach accounting for experimental design factors and a relationship matrix was fitted to obtain the breeding values for grain yield and estimate genetic trends. A positive genetic trend of 0.1% per annum with a yield advantage of 1.52 kg/ha was observed in IRRI, Philippines. In Bangladesh, we observed a genetic gain of 0.31% per annum with a yield advantage of 14.02 kg/ha. In the released varieties, we observed a genetic gain of 0.12% per annum with a 2.2 kg/ha/year yield advantage in the IRRI, Philippines. For the Bangladesh dataset, a genetic gain of 0.14% per annum with a yield advantage of 5.9 kg/ha/year was observed in the released varieties. Based on breeding values for grain yield, a core set of the top 145 genotypes with higher breeding values of > 2400 kg/ha in the IRRI, Philippines, and > 3500 kg/ha in Bangladesh with a reliability of > 0.4 were selected to develop the elite breeding panel. Conclusively, a recurrent selection breeding strategy integrated with novel technologies like genomic selection and speed breeding is highly required to achieve higher genetic gains in IRRI's salinity breeding programs.


Assuntos
Oryza , Oryza/genética , Reprodutibilidade dos Testes , Salinidade , Melhoramento Vegetal , Bangladesh , Grão Comestível
3.
Plant Biotechnol J ; 22(5): 1051-1066, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38070179

RESUMO

To increase rice yields and feed billions of people, it is essential to enhance genetic gains. However, the development of new varieties is hindered by longer generation times and seasonal constraints. To address these limitations, a speed breeding facility has been established and a robust speed breeding protocol, SpeedFlower is developed that allows growing 4-5 generations of indica and/or japonica rice in a year. Our findings reveal that a high red-to-blue (2R > 1B) spectrum ratio, followed by green, yellow and far-red (FR) light, along with a 24-h long day (LD) photoperiod for the initial 15 days of the vegetative phase, facilitated early flowering. This is further enhanced by 10-h short day (SD) photoperiod in the later stage and day and night temperatures of 32/30 °C, along with 65% humidity facilitated early flowering ranging from 52 to 60 days at high light intensity (800 µmol m-2 s-1). Additionally, the use of prematurely harvested seeds and gibberellic acid treatment reduced the maturity duration by 50%. Further, SpeedFlower was validated on a diverse subset of 198 rice accessions from 3K RGP panel encompassing all 12 distinct groups of Oryza sativa L. classes. Our results confirmed that using SpeedFlower one generation can be achieved within 58-71 days resulting in 5.1-6.3 generations per year across the 12 sub-groups. This breakthrough enables us to enhance genetic gain, which could feed half of the world's population dependent on rice.


Assuntos
Oryza , Humanos , Oryza/genética , Melhoramento Vegetal , Luz
4.
Biochim Biophys Acta Gen Subj ; 1868(2): 130544, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38104668

RESUMO

Epigenetic modifications act as conductors of inheritable alterations in gene expression, all while keeping the DNA sequence intact, thereby playing a pivotal role in shaping plant growth and development. This review article presents an overview of techniques employed to investigate and manipulate epigenetic diversity in crop plants, focusing on both naturally occurring and artificially induced epialleles. The significance of epigenetic modifications in facilitating adaptive responses is explored through the examination of how various biotic and abiotic stresses impact them. Further, environmental chemicals are explored for their role in inducing epigenetic changes, particularly focusing on inhibitors of DNA methylation like 5-AzaC and zebularine, as well as inhibitors of histone deacetylation including trichostatin A and sodium butyrate. The review delves into various approaches for generating epialleles, including tissue culture techniques, mutagenesis, and grafting, elucidating their potential to induce heritable epigenetic modifications in plants. In addition, the ground breaking CRISPR/Cas is emphasized for its accuracy in targeting specific epigenetic changes. This presents a potent tools for deciphering the intricacies of epigenetic mechanisms. Furthermore, the intricate relationship between epigenetic modifications and non-coding RNA expression, including siRNAs and miRNAs, is investigated. The emerging role of exo-RNAi in epigenetic regulation is also introduced, unveiling its promising potential for future applications. The article concludes by addressing the opportunities and challenges presented by these techniques, emphasizing their implications for crop improvement. Conclusively, this extensive review provides valuable insights into the intricate realm of epigenetic changes, illuminating their significance in phenotypic plasticity and their potential in advancing crop improvement.


Assuntos
Epigênese Genética , MicroRNAs , Epigênese Genética/genética , Plantas , Metilação de DNA , Mutagênese , MicroRNAs/genética
5.
Life Sci Alliance ; 7(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38148113

RESUMO

Identifying high-impact, rare genetic variants associated with specific traits is crucial for crop improvement. The 3,010 rice genome (3K RG) dataset offers a valuable resource for discovering genomic regions with potential applications in crop breeding. We used Extreme Trait GWAS (Et-GWAS), employing bulk pooling and allele frequency measurement to efficiently extract rare variants from the 3K RG. This innovative approach facilitates the detection of associations between genetic variants and target traits, concentrating and quantifying rare alleles. In our study, on grain yield under drought stress, Et-GWAS successfully identified five key genes (OsPP2C11, OsK5.2, OsIRO2, OsPEX1, and OsPWA1) known for enhancing yield under drought. In addition, we examined the overlap of our results with previously reported qDTY-QTLs and observed that OsUCH1 and OsUCH2 genes were located within qDTY2.2 We compared Et-GWAS with conventional GWAS, finding it effectively capturing most candidate genes associated with the target trait. Validation with resistant starch showed similar results. To enhance user-friendliness, we developed a GUI for Et-GWAS; https://et-gwas.shinyapps.io/Et-GWAS/.


Assuntos
Oryza , Oryza/genética , Estudo de Associação Genômica Ampla/métodos , Fenótipo , Locos de Características Quantitativas/genética , Frequência do Gene
6.
Science ; 382(6668): 325-329, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37856595

RESUMO

Benzylic stereogenic centers are ubiquitous in natural products and pharmaceuticals. A potentially general, though challenging, approach toward their selective creation would be asymmetric unimolecular nucleophilic substitution (SN1) reactions that proceed through highly reactive benzylic cations. We now report a broadly applicable solution to this problem by identifying chiral counteranions that pair with secondary benzylic cations to engage in catalytic asymmetric C-C, C-O, and C-N bond-forming reactions with excellent enantioselectivity. The critical cationic intermediate can be accessed from different precursors via Lewis- or Brønsted acid catalysis. Key to our strategy is the use of only weakly basic, confined counteranions that are posited to prolong the lifetime of the carbocation, thereby avoiding nonproductive deprotonation pathways to the corresponding styrene.

7.
BMC Plant Biol ; 23(1): 529, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37904124

RESUMO

BACKGROUND: In hexaploid wheat, quantitative trait loci (QTL) and meta-QTL (MQTL) analyses were conducted to identify genomic regions controlling resistance to cereal cyst nematode (CCN), Heterodera avenae. A mapping population comprising 149 RILs derived from the cross HUW 468 × C 306 was used for composite interval mapping (CIM) and inclusive composite interval mapping (ICIM). RESULTS: Eight main effect QTLs on three chromosomes (1B, 2A and 3A) were identified using two repeat experiments. One of these QTLs was co-localized with a previously reported wheat gene Cre5 for resistance to CCN. Seven important digenic epistatic interactions (PVE = 5% or more) were also identified, each involving one main effect QTL and another novel E-QTL. Using QTLs earlier reported in literature, two meta-QTLs were also identified, which were also used for identification of 57 candidate genes (CGs). Out of these, 29 CGs have high expression in roots and encoded the following proteins having a role in resistance to plant parasitic nematodes (PPNs): (i) NB-ARC,P-loop containing NTP hydrolase, (ii) Protein Kinase, (iii) serine-threonine/tyrosine-PK, (iv) protein with leucine-rich repeat, (v) virus X resistance protein-like, (vi) zinc finger protein, (vii) RING/FYVE/PHD-type, (viii) glycosyl transferase, family 8 (GT8), (ix) rubisco protein with small subunit domain, (x) protein with SANT/Myb domain and (xi) a protein with a homeobox. CONCLUSION: Identification and selection of resistance loci with additive and epistatic effect along with two MQTL and associated CGs, identified in the present study may prove useful for understanding the molecular basis of resistance against H. avenae in wheat and for marker-assisted selection (MAS) for breeding CCN resistant wheat cultivars.


Assuntos
Locos de Características Quantitativas , Tylenchoidea , Animais , Locos de Características Quantitativas/genética , Triticum/genética , Triticum/parasitologia , Melhoramento Vegetal , Fenótipo
8.
World Neurosurg ; 180: e233-e242, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37739176

RESUMO

OBJECTIVE: Intraoperative ultrasound is a promising tool for intraoperative tumor resection control. Navigated three-dimensional US (n3DUS) has many benefits over standard two-dimensional US (2DUS). METHODS: Two cohorts (2DUS and n3DUS) of patients with histologically confirmed adult diffuse gliomas undergoing US-guided resection control were compared. The primary outcomes assessed were extent of resection and morbidity. Multivariate analysis was performed to account for tumor characteristics (delineation and eloquence) and surgeon experience, which could confound the results. RESULTS: n3DUS was used more often (n = 252) than 2DUS (n = 86). Tumor delineation was similar in 2DUS and n3DUS cohorts, although the n3DUS cohort included more nonenhancing, histologically lower grade (2-3) gliomas and had more gliomas located in eloquent regions; also, n3DUS was more often used by senior surgeons. Gross total resection (GTR) rates were 47%, and major morbidity was 9.5%. On multivariate analysis, after controlling for all other variables between the 2 groups, patients with well-delineated tumors, patients with prior treatment, and patients who underwent n3DUS were more likely to have GTR (adjusted odds ratios 3.0, 1.8, and 2.2, respectively), whereas patients with tumors in eloquent locations were half as likely (adjusted odds ratio 0.5) to have GTR. Eloquent located tumors were likely to be associated with higher neurological morbidity, although major morbidity was not significantly different. CONCLUSIONS: Good delineation, noneloquent location, and use of n3DUS was associated with a higher probability of GTR in glioma surgery. Surgeons' experience did not influence the extent of resection. Morbidity was predominantly associated with eloquent location, independent of all other factors.


Assuntos
Neoplasias Encefálicas , Glioma , Adulto , Humanos , Estudos de Coortes , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Monitorização Intraoperatória/métodos , Glioma/diagnóstico por imagem , Glioma/cirurgia , Ultrassonografia
9.
Mol Biol Rep ; 50(11): 9191-9202, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37776411

RESUMO

BACKGROUND: Wheat is a major staple crop and helps to reduce worldwide micronutrient deficiency. Investigating the genetics that control the concentrations of iron (Fe) and zinc (Zn) in wheat is crucial. Hence, we undertook a comprehensive study aimed at elucidating the genomic regions linked to the contents of Fe and Zn in the grain. METHODS AND RESULTS: We performed the multi-locus genome-wide association (ML-GWAS) using a panel of 161 wheat-Aegilops substitution and addition lines to dissect the genomic regions controlling grain iron (GFeC), and grain zinc (GZnC) contents. The wheat panel was genotyped using 10,825 high-quality SNPs and phenotyped in three different environments (E1-E3) during 2017-2019. A total of 111 marker-trait associations (MTAs) (at p-value < 0.001) were detected that belong to all three sub-genomes of wheat. The highest number of MTAs were identified for GFeC (58), followed by GZnC (44) and yield (9). Further, six stable MTAs were identified for these three traits and also two pleiotropic MTAs were identified for GFeC and GZnC. A total of 1291 putative candidate genes (CGs) were also identified for all three traits. These CGs encode a diverse set of proteins, including heavy metal-associated (HMA), bZIP family protein, AP2/ERF, and protein previously associated with GFeC, GZnC, and grain yield. CONCLUSIONS: The significant MTAs and CGs pinpointed in this current study are poised to play a pivotal role in enhancing both the nutritional quality and yield of wheat, utilizing marker-assisted selection (MAS) techniques.


Assuntos
Aegilops , Ferro , Ferro/metabolismo , Estudo de Associação Genômica Ampla , Zinco/metabolismo , Triticum/genética , Triticum/metabolismo , Aegilops/genética , Aegilops/metabolismo , Genoma de Planta , Grão Comestível/genética
10.
Plants (Basel) ; 12(16)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37631223

RESUMO

The present study evaluates marker assisted forward breeding (MAFB)-derived disease resistant introgression lines (ILs) which do not have the targeted resistance genes for bacterial blight (xa5 + xa13 + Xa21) and blast (Pi2 + Pi9 + Pi54). The ILs were derived in the background of two elite rice cultivars, Krishna Hamsa [Recurrent Parent 1 (RP1)] and WGL 14 (RP2), involving multi-parent inter-crossing. Molecular characterization with gene specific markers for seven reported resistance genes each for bacterial blight (Xa33, Xa38, xa23, Xa4, xa8, Xa27 and Xa41) and blast (Pi1, Pi20, Pi38, Pib, Pitp, Pizt and Pi40) revealed the presence of xa8 and Xa38, in addition to the targeted xa5, xa13 and Xa21 for bacterial blight resistance and Pi1, Pi38, Pi40, Pi20, Pib and Pipt, in addition to the targeted Pi9 and Pi54, for blast resistance in various combinations. A maximum of nine resistance genes xa5 + Xa21 + Pi54 + xa8 + Pipt + Pi38 + Pi1 + Pi20 + Pib was observed in RP1-IL 19030 followed by eight genes xa5 + xa13 + Xa21 + xa8 + Pi9 + Pipt + Pi1 + Pi20 in two RP2-ILs, 19344 and 19347. ANOVA revealed the presence of significant variability for all the yield traits except "days to 50% flowering" (DFF). Box plots depicted the seasonal differences in the phenotypic expression of the yield traits. There was significant positive association of grain yield with days to flowering, tiller number and panicle number. Thousand grain weight is also significantly and positively correlated with grain yield. On the contrary, grain yield showed a significantly negative association with plant height. Multi-parent selective inter-crossing in the present study not only led to the development of high yielding disease resistant ILs but also enhanced recovery of the recurrent parent via selection for essential morphological features. More than 90.0% genetic similarity in the ILs based on SNP-based background selection demonstrated the success of multi-parent selective intercrossing in the development of disease resistant NILs.

11.
Int J Med Inform ; 177: 105154, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37506442

RESUMO

BACKGROUND: The main goal of glioma surgery is to remove the maximum amount of tumor without worsening the patient's neurological condition. Intraoperative ultrasound (US) imaging technologies (2D and 3D) are available to assist surgeons, providing real-time updates. Considering additional time, personnel, and cost, we investigate if comparable outcomes can be achieved using basic (2D) and advanced (3D) technology. OBJECTIVE: We propose predictive models for (i) glioma tumor resectability (ii) surgical outcome, and (iii) a model to predict the outcome of surgery aided with a particular ultrasound and compare outcomes between 2D and 3D US. METHODOLOGY: We used real-world surgery data from a tertiary cancer centre. Three groups of cases were analyzed (2D US used, 3D US used, and no US used during resection). The data analysis uses hypothesis testing, bootstrap sampling, and logistic regression. RESULTS: The preoperatively anticipated extent of tumor removal correlated with the postoperative MRI measurement of tumor removal for US-supported surgery (p=0.01) but not for no US-supported surgeries (p = 0.13). A combination of delineation, eloquence, and the multifocal/multicentric nature of the tumor effectively predicted resectability. The eventual outcome of surgery (actual extent of resection achieved) can be predicted by prior treatment status, delineation, eloquence, and satellite nodules. Based on our prediction model (training set of 350 cases and test of 40 cases of US-guided surgeries), we identify some cases where 3D US seems to offer superior EORs. CONCLUSION: The resectability of glioma tumors is crucial in determining surgical objectives, and the type of ultrasound used as support impacts tumor removal. The findings in this study aid informed decision-making and optimize imaging technology usage, providing a decision flow for selecting ultrasound based on tumor characteristics.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Glioma/diagnóstico por imagem , Glioma/cirurgia , Glioma/patologia , Imageamento por Ressonância Magnética/métodos
12.
Sci Rep ; 13(1): 5916, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37041155

RESUMO

Cereal cyst nematode (CCN) is a major threat to cereal crop production globally including wheat (Triticum aestivum L.). In the present study, single-locus and multi-locus models of Genome-Wide Association Study (GWAS) were used to find marker trait associations (MTAs) against CCN (Heterodera avenae) in wheat. In total, 180 wheat accessions (100 spring and 80 winter types) were screened against H. avenae in two independent years (2018/2019 "Environment 1" and 2019/2020 "Environment 2") under controlled conditions. A set of 12,908 SNP markers were used to perform the GWAS. Altogether, 11 significant MTAs, with threshold value of -log10 (p-values) ≥ 3.0, were detected using 180 wheat accessions under combined environment (CE). A novel MTA (wsnp_Ex_c53387_56641291) was detected under all environments (E1, E2 and CE) and considered to be stable MTA. Among the identified 11 MTAs, eight were novel and three were co-localized with previously known genes/QTLs/MTAs. In total, 13 putative candidate genes showing differential expression in roots, and known to be involved in plant defense mechanisms were reported. These MTAs could help us to identify resistance alleles from new sources, which could be used to identify wheat varieties with enhanced CCN resistance.


Assuntos
Cistos , Nematoides , Animais , Triticum/genética , Grão Comestível/genética , Estudo de Associação Genômica Ampla , Genômica , Nematoides/genética
13.
Mol Genet Genomics ; 298(3): 579-601, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36884084

RESUMO

Significant yield losses in major cereal-growing regions around the world have been linked to cereal cyst nematodes (Heterodera spp.). Identifying and deploying natural sources of resistance is of utmost importance due to increasing concerns associated with chemical methods over the years. We screened 141 diverse wheat genotypes collected from pan-Indian wheat cultivation states for nematode resistance over two years, alongside two resistant (Raj MR1, W7984 (M6)) and two susceptible (WH147, Opata M85) checks. We performed genome-wide association analysis using four single-locus models (GLM, MLM, CMLM, and ECMLM) and three multi-locus models (Blink, FarmCPU, and MLMM). Single locus models identified nine significant MTAs (-log10 (P) > 3.0) on chromosomes 2A, 3B, and 4B whereas, multi-locus models identified 11 significant MTAs on chromosomes 1B, 2A, 3B, 3D and 4B. Single and multi-locus models identified nine common significant MTAs. Candidate gene analysis identified 33 genes like F-box-like domain superfamily, Cytochrome P450 superfamily, Leucine-rich repeat, cysteine-containing subtype Zinc finger RING/FYVE/PHD-type, etc., having a putative role in disease resistance. Such genetic resources can help to reduce the impact of this disease on wheat production. Additionally, these results can be used to design new strategies for controlling the spread of H. avenae, such as the development of resistant varieties or the use of resistant cultivars. Finally, the obtained results can also be used to identify new sources of resistance to this pathogen and develop novel control methods.


Assuntos
Cistos , Tylenchoidea , Animais , Triticum/genética , Estudo de Associação Genômica Ampla , Grão Comestível/genética , Tylenchoidea/genética
14.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36674611

RESUMO

Plants experience different stresses, i.e., abiotic, or biotic, and to combat them, plants re-program the expression of growth-, metabolism-, and resistance-related genes. These genes differ in their synonymous codon usage frequency and show codon usage bias. Here, we investigated the correlation among codon usage bias, gene expression, and underlying mechanisms in rice under abiotic and biotic stress conditions. The results indicated that genes with higher expression (up- or downregulated) levels had high GC content (≥60%), a low effective number of codon usage (≤40), and exhibited strong biases towards the codons with C/G at the third nucleotide position, irrespective of stress received. TTC, ATC, and CTC were the most preferred codons, while TAC, CAC, AAC, GAC, and TGC were moderately preferred under any stress (abiotic or biotic) condition. Additionally, downregulated genes are under mutational pressure (R2 ≥ 0.5) while upregulated genes are under natural selection pressure (R2 ≤ 0.5). Based on these results, we also identified the possible target codons that can be used to design an optimized set of genes with specific codons to develop climate-resilient varieties. Conclusively, under stress, rice has a bias towards codon usage which is correlated with GC content, gene expression level, and gene length.


Assuntos
Uso do Códon , Oryza , Oryza/genética , Códon/genética , Mutação , Aclimatação
15.
Front Plant Sci ; 14: 1304388, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38273959

RESUMO

Improving the quality of the appearance of rice is critical to meet market acceptance. Mining putative quality-related genes has been geared towards the development of effective breeding approaches for rice. In the present study, two SL-GWAS (CMLM and MLM) and three ML-GWAS (FASTmrEMMA, mrMLM, and FASTmrMLM) genome-wide association studies were conducted in a subset of 3K-RGP consisting of 198 rice accessions with 553,831 SNP markers. A total of 594 SNP markers were identified using the mixed linear model method for grain quality traits. Additionally, 70 quantitative trait nucleotides (QTNs) detected by the ML-GWAS models were strongly associated with grain aroma (AR), head rice recovery (HRR, %), and percentage of grains with chalkiness (PGC, %). Finally, 39 QTNs were identified using single- and multi-locus GWAS methods. Among the 39 reliable QTNs, 20 novel QTNs were identified for the above-mentioned three quality-related traits. Based on annotation and previous studies, four functional candidate genes (LOC_Os01g66110, LOC_Os01g66140, LOC_Os07g44910, and LOC_Os02g14120) were found to influence AR, HRR (%), and PGC (%), which could be utilized in rice breeding to improve grain quality traits.

16.
BMC Med Inform Decis Mak ; 22(1): 307, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36437463

RESUMO

BACKGROUND: Gliomas are among the most typical brain tumors tackled by neurosurgeons. During navigation for surgery of glioma brain tumors, preoperatively acquired static images may not be accurate due to shifts. Surgeons use intraoperative imaging technologies (2-Dimensional and navigated 3-Dimensional ultrasound) to assess and guide resections. This paper aims to precisely capture the importance of preoperative parameters to decide which type of ultrasound to be used for a particular surgery. METHODS: This paper proposes two bagging algorithms considering base classifier logistic regression and random forest. These algorithms are trained on different subsets of the original data set. The goodness of fit of Logistic regression-based bagging algorithms is established using hypothesis testing. Furthermore, the performance measures for random-forest-based bagging algorithms used are AUC under ROC and AUC under the precision-recall curve. We also present a composite model without compromising the explainability of the models. RESULTS: These models were trained on the data of 350 patients who have undergone brain surgery from 2015 to 2020. The hypothesis test shows that a single parameter is sufficient instead of all three dimensions related to the tumor ([Formula: see text]). We observed that the choice of intraoperative ultrasound depends on the surgeon making a choice, and years of experience of the surgeon could be a surrogate for this dependence. CONCLUSION: This study suggests that neurosurgeons may not need to focus on a large set of preoperative parameters in order to decide on ultrasound. Moreover, it personalizes the use of a particular ultrasound option in surgery. This approach could potentially lead to better resource management and help healthcare institutions improve their decisions to make the surgery more effective.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Ultrassonografia/métodos , Glioma/diagnóstico por imagem , Glioma/cirurgia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/patologia , Algoritmos
17.
Sci Rep ; 12(1): 10397, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35729191

RESUMO

Chebulinic acid (CA), originally isolated from the flower extract of the plant Terminalia chebula, has been shown to inhibit infection of herpes simplex virus-2 (HSV-2), suggestively by inhibiting the host entry step of viral infection. Like HSV-2, the dengue virus (DENV) and chikungunya virus (CHIKV) also use receptor glycosaminoglycans (GAG) to gain host entry, therefore, the activity of CA was tested against these viruses. Co-treatment of 8 µM CA with DENV-2 caused 2 log decrease in the virus titer (4.0 log10FFU/mL) at 120 h post infection, compared to virus control (5.95 log10FFU/mL). In contrast, no inhibitory effect of CA was observed against CHIKV infection under any condition. The mechanism of action of CA was investigated in silico by employing DENV-2 and CHIKV envelope glycoproteins. During docking, CA demonstrated equivalent binding at multiple sites on DENV-2 envelope protein, including GAG binding site, which have previously been reported to play a crucial role in host attachment and fusion, indicating blocking of these sites. However, CA did not show binding to the GAG binding site on envelope protein-2 of CHIKV. The in vitro and in silico findings suggest that CA possesses the ability to inhibit DENV-2 infection at the entry stage of its infection cycle and may be developed as a potential therapeutic agent against it.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Dengue , Antivirais/farmacologia , Antivirais/uso terapêutico , Febre de Chikungunya/tratamento farmacológico , Vírus Chikungunya/fisiologia , Dengue/tratamento farmacológico , Glicosaminoglicanos/metabolismo , Herpesvirus Humano 2/metabolismo , Humanos , Taninos Hidrolisáveis
18.
Sci Rep ; 12(1): 9586, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35688926

RESUMO

The resistance to cereal cyst nematode (Heterodera avenae Woll.) in wheat (Triticum aestivum L.) was studied using 114 doubled haploid lines from a novel ITMI mapping population. These lines were screened for nematode infestation in a controlled environment for two years. QTL-mapping analyses were performed across two years (Y1 and Y2) as well as combining two years (CY) data. On the 114 lines that were screened, a total of 2,736 data points (genotype, batch or years, and replication combinations) were acquired. For QTL analysis, 12,093 markers (11,678 SNPs and 415 SSRs markers) were used, after filtering the genotypic data, for the QTL mapping. Composite interval mapping, using Haley-Knott regression (hk) method in R/QTL, was used for QTL analysis. In total, 19 QTLs were detected out of which 13 were novel and six were found to be colocalized or nearby to previously reported Cre genes, QTLs or MTAs for H. avenae or H. filipjevi. Nine QTLs were detected across all three groups (Y1, Y2 and CY) including a significant QTL "QCcn.ha-2D" on chromosome 2D that explains 23% of the variance. This QTL colocalized with a previously identified Cre3 locus. Novel QTL, QCcn.ha-2A, detected in the present study could be the possible unreported homeoloci to QCcn.ha-2D, QCcn.ha-2B.1 and QCcn.ha-2B.2. Six significant digenic epistatic interactions were also observed. In addition, 26 candidate genes were also identified including genes known for their involvement in PPNs (plant parasitic nematodes) resistance in different plant species. In-silico expression of putative candidate genes showed differential expression in roots during specific developmental stages. Results obtained in the present study are useful for wheat breeding to generate resistant genetic resources against H. avenae.


Assuntos
Cistos , Tylenchida , Tylenchoidea , Animais , Grão Comestível , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Triticum/genética , Triticum/parasitologia , Tylenchoidea/genética
19.
Plants (Basel) ; 11(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35270092

RESUMO

Major biotic stresses viz., bacterial blight (BB) and blast and brown plant hopper (BPH) coupled with abiotic stresses like drought stress, significantly affect rice yields. To address this, marker-assisted intercross (IC) breeding involving multiple donors was used to combine three BB resistance genes-xa5, xa13 and Xa21, two blast resistance genes-Pi9 and Pi54, two BPH resistance genes-Bph20 and Bph21, and four drought tolerant quantitative trait loci (QTL)-qDTY1.1, qDTY2.1, qDTY3.1 and qDTY12.1-in the genetic background of the elite Indian rice cultivar 'Krishna Hamsa'. Three cycles of selective intercrossing followed by selfing coupled with foreground selection and phenotyping for the target traits resulted in the development of 196 introgression lines (ILs) with a myriad of gene/QTL combinations. Based on the phenotypic reaction, the ILs were classified into seven phenotypic classes of resistance/tolerance to the following: (1) BB, blast and drought-5 ILs; (2) BB and blast-10 ILs; (3) BB and drought-9 ILs; (4) blast and drought-42 ILs; (5) BB-3 ILs; (6) blast-84 ILs; and (7) drought-43 ILs; none of the ILs were resistant to BPH. Positive phenotypic response (resistance) was observed to both BB and blast in 2 ILs, BB in 9 ILs and blast in 64 ILs despite the absence of corresponding R genes. Inheritance of resistance to BB and/or blast in such ILs could be due to the unknown genes from other parents used in the breeding scheme. Negative phenotypic response (susceptibility) was observed in 67 ILs possessing BB-R genes, 9 ILs with blast-R genes and 9 ILs harboring QTLs for drought tolerance. Complex genic interactions and recombination events due to the involvement of multiple donors explain susceptibility in some of the marker positive ILs. The present investigation successfully demonstrates the possibility of rapid development of multiple stress-tolerant/resistant ILs in the elite cultivar background involving multiple donors through selective intercrossing and stringent phenotyping. The 196 ILs in seven phenotypic classes with myriad of gene/QTL combinations will serve as a useful genetic resource in combining multiple biotic and abiotic stress resistance in future breeding programs.

20.
Front Plant Sci ; 13: 814774, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35237289

RESUMO

Drought is one of the most predominant abiotic stresses in this century, leading to a drastic reduction in the yield of rainfed rice ecosystems. Breeding of drought-resilient rice varieties is very much in demand for sustainable rice production in drought-prone rainfed ecology. An experiment was designed under irrigated non-stress and drought-stress situations involving an exotic drought-tolerant landrace (Chao Khaw) and a high-yielding aromatic rice cultivar (Kasturi), and an F2:4 derived population of 156 breeding lines was developed at IRRI South Asia Hub, Hyderabad. The objective of the study was to assess the genetic variability, drought tolerance behavior, and identify promising breeding lines for different rice ecologies and drought breeding programs. Restricted maximum likelihood (REML) analysis using the mixed model approach revealed a considerable genetic variation in the population for yield and yield contributing traits in non-stress and drought-stress conditions. We observed very high heritability for all the selected traits under stress 2015 WS (73.8% to 85.3%) and 2016 WS (72.4% to 93.5%) and non-stress 2015 WS (68.2% To 92.9%) and 2016 WS (61.4% to 92.6%) environments, indicating possible selection for grain yield under drought stress and non-stress with the same precision level. None of the secondary traits except harvest index and biomass included in our study showed a positive association with grain yield, indicating indirect selection's ineffectiveness in improving yield under drought. A total of 48 promising breeding lines were found to have a better yield than donor Chao Khaw (up to 38% advantage) and popular drought-tolerant cultivars Shabhagidhan (up to 48% advantage) in stress conditions and recommended for rainfed upland ecology, 34 breeding lines under the well-watered condition suited for rainfed lowland ecology. Overall, the study found 21 common breeding lines that showed their superiority in non-stress and under drought stress situations, fitting best in rainfed lowland ecology with occasional drought occurrence. The large genetic variation found in this population can be exploited further to develop a few forward breeding high-yielding lines with better drought tolerance ability and used as drought donors in drought breeding programs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA